Precision medicine
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Sequence: understand target function using protein sequence. NLP to find targets (word sequence).

Graph: generate compound graph 2D structure (deep generative model)
Structure: modify structure according to 3D structure (geometric deep learning)

Genomics: side effects, personalized efficacy, repurposing, etc. (multi-modality)



® how to reuse an old drug



Precision medicine:

the right patient, the right drug, the right time, the right dose

One-size-fit-all
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Frost and Sullivan: new paradigm shift in treatment.

Precision medicine ensures delivery
of the rightintervention to the right
patientat the righttime.

Precision Medicine
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Each Patient Benefits From Individualized
Treatment




We don’t have so many “drugs”

e Discovery new drug!?
- Often not in the scope of precision medicine
- New patient cannot wait for a new drug
® Drug repurposing
- Drug A, which is used to treat disease X, is later used to treat disease Y
- Well-documented side effects and less restriction from FDA
® Drug combination

- DrugA is not effective. Drug B is not effective. Durg A and B used together
is effective.

® Personalized dosage

- Widely used in clinics. Use genomics data to determine dosage (regression).



Drug

repurposing

Table 1| Selected successful drug repurposing examples and the repurposing approach employed

Drug name

Zidovudine

Minoxidil

Sildenafil

Thalidomide

Celecoxib

Atomoxetine

Duloxetine

Rituximab

Raloxifene

Fingolimod

Dapoxetine

Topiramate

Ketoconazole

Aspirin

Original
indication

Cancer

Hypertension

Angina

Morning sickness
Pain and
inflammation

Parkinson disease

Depression

Various cancers

Osteoporosis

Transplant
rejection

Analgesia and
depression

Epilepsy

Fungal infections

Analgesia

New indication

HIV/AIDS

Hair loss

Erectile dysfunction

Erythema nodosum
leprosum and
multiple myeloma

Familial
adenomatous

polyps
ADHD

Sul

Rheumatoid
arthritis

Breast cancer

MS

Premature
ejaculation

Obesity

Cushing syndrome

Colorectal cancer

Date of
approval

1987

1988

1998

1998 and
2006
2000
2002

2004

2006

2007

2010

2012

2012

2014

2015

Pushpakom et al. Drug repurposing: progress, challenges and recommendations

Repurposing approach
used
In vitro screening of

compound libraries

Retrospective clinical
analysis (identification of
hair growth as an adverse
effect)

Retrospective clinical
analysis

Off-label usage and
pharmacological analysis

Pharmacological analysis

Pharmacological analysis

Pharmacological analysis

Retrospective clinical
analysis (remission of
coexisting rheumatoid
arthritis in patients with
non-Hodgkin lymphoma
treated with rituximab'*!)

Retrospective clinical
analysis

Pharmacological and
structural analysis**
Pharmacological analysis
Pharmacological analysis

Pharmacological analysis

Retrospective clinical and
pharmacological analysis

Comments on outcome of repurposing

Zidovudine was the first anti-HIV drug to be
approved by the FDA

Global sales for minoxidil were
US$860 million in 2016 (Questale minoxidil
salesreport 2017; see Related links)

Marketed as Viagra, sildenafil became the
leading product in the erectile dysfunction
drug market, with global sales in 2012 of
$2.05 billion®

Thalidomide derivatives have achieved
substantial clinical and commercial success
in multiple myeloma

The total revenue from Celebrex (Pfizer) at
the end of 2014 was $2.69 billion (Pfizer 2014

financial report; see Related links)

Strattera (Eli Lilly) recorded global sales of
$855 million in 2016

Approved by the EMA for SUL. The
application was withdrawn in the US.
Duloxetine is approved for the treatment of
depression and chronic pain in the US

Global sales of rituximab topped $7 billion in
2015 (REF')

Approved by the FDA for invasive breast
cancer. Worldwide sales of $237 million in

2015 (see Related links)

First oral disease-modifying therapy to be
approved for MS. Global sales for fingolimod
(Gilenya) reached $3.1 billion in 2017 (see
Related links)

Approved in the UK and a number of
European countries; still awaiting approval

in the US. Peak sales are projected to reach
$750 million

Qsymia (Vivus) contains topiramate in
combination with phentermine

Approved by the EMA for Cushing syndrome
in adults and adolescents above the age of

12 years (see Related links)

US Preventive Services Task Force released
draft recommendations in September 2015
regarding the use of aspirin to help prevent
cardiovascular disease and colorectal
cancer®’



Approaches used in drug repurposing

| i arr——— O S"2P!

Genes that are Network analysis using
associated with a genetic, protein or
disease may prove to disease data can aid
be potential drug identification of
targets repurposing targets

Gene target

Molecular docking

This is a structure-based

Retrospective clinical analysis
Systematic analysis of EHRs,

3D structure

computational strategy to predict
binding site complementarity
between a ligand (for example,

clinical trial data and post-
marketing surveillance data
could inform drug repurposing

EHR

a drug) and a therapeutic target
(typically a protein)

Drug
repurposing

Signature matching

This involves comparing the
‘signature’ of a drug —
characteristics such as its
transcriptomic, structural or
adverse effect profile —
with that of another drug

or disease phenotype

Large-scale in vitro drug
screens with paired genomic
data, EHR-linEed large
biobanks and self-reported
patient data are novel
avenues to exploit for

drug repurposing

Binding assays to identify Phenotypic screening
relevant target interactions High-throughput

Techniques such as affinity phenotypic screening of
chromatography and mass compounds using in vitro
spectrometry can be used to or in vivo disease models
identify novel targets of can indicate potential for
known drugs clinical evaluation

Gene
expression

[C] Computational approaches
] Experimental approaches




Drug repurposing strategy

e Drug-based

- If drug A can cure disease X and is similar to drug B, then B
might be also treat X

e Disease-based

- If disease X and Y have similar profiles and indications, and drug
R can cure X, then R can also cureY.

Jarada et al. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions



Use gene expression after treatment

Drugs target on similar proteins or have similar Mode of Actions have similar (after

treatment) expression.
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lorio et al. Discovery of drug mode of action and drug repositioning from transcriptional responses



Compare disease expression
and drug expression

Reference Database of Drug Gene Expression
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Sirota et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data



Expression-based drug repurposing

e People realized that the performance (accuracy, coverage) depends
on the data, rather than the model

e How about we just generate the expression of X drugs onY tissues
- LINCS: Library of Integrated Network-based Cellular Signatures
- |5 institutions, > 1000 cell lines, >5000 drugs, 1000 genes
- |.3 million after treatment gene expression vectors

- cMAP: 3 cell lines, but 20k genes



LINCS
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® Adverse drug reaction prediction (VWang et al. Drug-induced adverse events prediction with the LINCS L1000 data)
e Drug target identification (Xia et al. Target Predictions using LINCS Data)
® Expression signature comparison (Xiao et al. SigMat: A Classification Scheme for Gene Signature Matching)

® Drug response prediction (Lu et al. Drug-induced cell viability prediction from LINCS-L 1000 through WRFEN-XGBoost

algorithm)

Keenan et al. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations




We don’t have so many “drugs”

e Discovery new drug!?
- Often not in the scope of precision medicine
- New patient cannot wait for a new drug
® Drug repurposing
- Drug A, which is used to treat disease X, is later used to treat disease Y
- Well-documented side effects and less restriction from FDA
® Drug combination

- DrugA is not effective. Drug B is not effective. Durg A and B used together
is effective.

® Personalized dosage

- Widely used in clinics. Use genomics data to determine dosage (regression).



Synthetic lethality: Gene A OR Gene B
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Question: how to leverage SL in drug combination discovery?

Source: wikipedia, Jerby-Arnon et al. Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic
Lethalrty



Drug combination therapy

e Breast cancer

- an alkylating agent (cyclophosphamide) and antimetabolites
(methotrexate and 5-fluorouracil)

e Anti-HIV cocktail
- Use of three or more antiretroviral medicines

* We don't have so many single drug candidate

® Drug combinations (k>=2) offer us more treatment plans



Drug treatment based on synthetic lethality

BRCA deficient
Normal cells
cancer cells
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Goal: We want to make normal cells survive and kill cancer cells (BRCA deficient cancer cells)

Prior knowledge: PARP| (off) + BRCAI (off) -> cell death
Solution: Turn off PARPI using Olaparib
Results:

® Normal cells: PARPI (off) + BRCAI (on) -> cell survive
® Cancer cells: PARPI (off) + BRCAI (off) -> cell death

O = Olaparib

Gilad et al. Drug Combination in Cancer Treatment—From Cocktails to Conjugated Combinations



Drug combination prediction

@ )

Drug B

—

Classification
task

Regression
task

EaB< EA+ EB
Eas=EA+ EB
Eas> EA+ EB

123
Drug A

E(A) is the efficacy of using drug A (e.g., IC50)

VWu et al. Machine learning methods, databases and tools for drug combination prediction

Loewe
Bliss
HSA
ZIP



Dose-response curve

A)Dose-Response curves of MCF-7 cells B) ICs, values in MCF-7 cells
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Mohammed et al. Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin A Isolated from Suaeda vermiculata for Antioxidant and Cytotoxic Activities



Drug combination dose-response curve

1D Dose-Response Curve 2D Dose-Response Surface
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Mevyer et al. Quantifying Drug Combination Synergy along Potency and Efficacy Axes



DeepSynergy: deep learning-based drug synergistic

prediction

Cell Line

Table 3. Performance metrics for the classification task

Performance Metric ROCAUC PR AUC ACC BACC PREC TPR TNR Kappa
Deep Neural Networks 090 +0.03 0.59=*0.06 092=*003 0.76=*+0.03 0.56=*0.11 0.57*0.09 0.95=0.03 0.51=0.04
Gradient Boosting Machines 0.89 = 0.02 0.59 = 0.04 0.87+=0.01 0.80*0.03 0.38+0.04 0.71+0.05 0.89*0.01 0.43*0.03
Random Forests 0.87£0.02 0.55*0.04 092=*0.01 0.73*0.04 0.57*0.04 0.49=0.08 0.96=0.01 0.48 = 0.04
Support Vector Machines 0.81 £0.04 0.42+0.08 0.76 £0.06 0.73*=0.03 0.23*0.04 0.69=*0.08 0.77*0.07 0.24 =0.05
Elastic Nets 0.78 £0.04 0.34+0.10 0.75*=0.05 0.71x£0.02 0.21 £0.03 0.65*0.07 0.76 £0.06 0.22 =0.03
Baseline (Median Polish) 0.77 £0.04 0.32*+0.09 0.76 £0.04 0.70+0.03 0.22*0.03 0.62x0.06 0.78*=0.04 0.22 = 0.04

Preuer et al. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.



Problem setting

Deep molecular
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Menden et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen.




Use gene expression after treatment

Drugs target on similar proteins or have similar Mode of Actions have similar (after

treatment) expression.
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lorio et al. Discovery of drug mode of action and drug repositioning from transcriptional responses



TAIJl: simulate post treatment expression
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Li et al. Network Propagation Predicts Drug Synergy in Cancers



Drug combinations for treating COVID-19
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Jin et al. Deep learning identifies synergistic drug combinations for treating COVID-19.



Estimation of the Warfarin Dose with Clinical and Pharmacogenetic Data

Table 1. Demographic and Clinical Characteristics of the Derivation and Validation Cohorts.
Derivation Cohort Validation Cohort
Variable (N=4043) (N=1009) P Value*
Warfarin dose — mg/wk 0.40
Median 28.0 28.0
Interquartile range 19.0-38.5 21.0-38.5
Genotype — no. (%)
VKORC1 rs9923231 0.97
G/G 1201 (29.7) 302 (29.9)
A/G 1444 (35.7) 363 (36.0)
A/A 1315 (32.5) 326 (32.3)
Unknown 83 (2.1) 18 (1.8)
CYP2C9t 0.38
*1 /%1 2970 (73.5) 749 (74.2)
*1 /%2 509 (12.6) 142 (14.1)
*1/%3 374 (9.3) 76 (7.5)
*2 %2 36 (0.9) 10 (1.0)
*2/%3 52 (1.3) 10 (1.0)
*3 %3 15 (0.4) 1(0.1)
Unknown 87 (2.2) 21 (2.1)
Age — no. (%) 0.88
10-19 yr
20-29yr Table 2. Predicted Warfarin Doses with the Pharmacogenetic Algorithm, Clinical Algorithm, and Fixed-Dose Approach
30-39 yr as Compared with the Actual Stable Dose in the Derivation and Validation Cohorts.*
:ﬁ: ;: Prediction Model Derivation Cohort Validation Cohorty
6069 yr Mean Absolute Error Mean Absolute Error
70-79 yr (95% Cl) R? (95% Cl) R?
80-89 yr mg/wk % mg/wk %
=0y Pharmacogenetic algorithmi§ 8.3 (8.1-8.6) 47 8.5 (8.0-9.0) 43
Clinical algorithm§ 10.0 (9.7-10.3) 27 9.9 (9.3-10.4) 26
Fixed-dose approach| 13.3 (13.0-13.5) 0 13.0 (12.4-13.6) 0

The International Warfarin Pharmacogenetics Consortium. Estimation of the Warfarin Dose with Clinical and Pharmacogenetic Data



Example of precision medicine

Condition
Mendelian disease

Cystic fibrosis

Long QT syndrome

Duchenne muscular
dystrophy

Malignant hyperthermia
susceptibility

Familial

hypercholesterolaemia
(FH)

Dopa-responsive
dystonia

Thoracic aortic
aneurysm

Left ventricular
hypertrophy

Precision oncology
Lung adenocarcinoma

Breast cancer

Gastrointestinal stromal
tumour

Melanoma
Pharmacogenomics

Warfarin sensitivity

Clopidogrel sensitivity,
post-stent procedure

Thiopurine sensitivity

Codeine sensitivity

Simvastatin sensitivity

Gene

CFTR

KCNQ1,KCNH2 and SCN5A

DMD

RYR1

PCSK9,APOB and LDLR

SPR
SMAD3,ACTA2, TGFBR1,

TGFBR2 and FBN1

MYH7,MYBPC3, GLA
and TTR

EGFR and ALK
HER2

KIT

BRAF

CYP2C9 and VKORC1

CYP2C19

TPMT
CYP2D6

SLCO1B1

Action

Specific therapies such as ivacaftor and a combination of
lumacaftor and ivacaftor

Specific therapy for patients with SCN5A mutations

Ongoing phase lll clinical trials of exon-skipping therapies
Avoid volatile anaesthetic agents; avoid extremes of heat

* Heterozygous FH (HeFH): eligible for PCSK9 inhibitor drugs
* Homozygous FH (HoFH): eligible for PCSK9 inhibitor drugs
in addition to lomitapide and mipomersen

Therapy with dopamine precursor L-dopa and the serotonin
precursor 5-hydroxytryptophan

Customization of surgical thresholds based on patient
genotype

Sarcomeric cardiomyopathy, Fabry disease and transthyretin
cardiac amyloid disease have specific therapies

Targeted kinase inhibitors, such as gefitinib and crizotinib

HER2 (also known as ERBB2)-targeted treatment, such as
trastuzumab and pertuzumab

Targeted KIT kinase activity inhibitors, such as imatinib

BRAF inhibitors, such as vemurafenib and dabrafenib

Adjust dosage of warfarin or consider alternative
anticoagulant

Consider alternative antiplatelet therapy (for example,
prasugrel or ticagrelor)

Reduce thiopurine dosage or consider alternative agent

Avoid use of codeine; consider alternatives such as morphine
and non-opioid analgesics

Reduce dose of simvastatin or consider an alternative statin;
consider routine creatine kinase surveillance

Euan A. Ashley. Towards precision medicine.



Iwo key problems
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e How to cluster patients

¢ We don’t have so many “drugs”

Martinez-Garcia et al. Data Integration Challenges for Machine Learning in Precision Medicine



How to cluster patients

DATA SOURCES
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e Patient clustering = data integration

- Find a "signature” vector for each patient

- Signature Is integrated from different data sources
e Heterogeneous data integration

- General challenges: Heterogenous, missing values, noise, privacy
¢ Precision medicine specific data integration challenges:

- Batch effects (different preprocessing pipelines, sequencing
techniques, reference ranges)

- Unpaired data (some patients only have genomics data, some
patients only have EHR data, very few patients have both)

Grapov et al. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine



Public biomedical databases

DATA REPOSITORY WEB LINK DISEASE TYPES OF MULTI-OMICS DATA AVAILABLE

The Cancer Genome Atlas https://cancergenome.nih.gov/  Cancer RNA-Seq, DNA-Seq, miRNA-Seq, SNV,

(TCGA) CNV, DNA methylation, and RPPA

Clinical Proteomic Tumor Analysis  https://cptac-data-portal. Cancer Proteomics data corresponding to TCGA

Consortium (CPTAC) georgetown.edu/cptacPublic/ cohorts

International Cancer Genomics https://icgc.org/ Cancer Whole genome sequencing, genomic

Consortium (ICGC) variations data (somatic and germline
mutation)

Cancer Cell Line Encyclopedia https://portals.broadinstitute. Cancer cell line Gene expression, copy number, and

(CCLE) org/ccle sequencing data; pharmacological
profiles of 24 anticancer drugs

Molecular Taxonomy of Breast http://molonc.bccrc.ca/ Breast cancer Clinical traits, gene expression, SNP, and

Cancer International Consortium aparicio-lab/research/ CNV

(METABRIC) metabric/

TARGET https://ocg.cancer.gov/ Pediatric cancers Gene expression, miRNA expression,

programs/target copy number, and sequencing data
Omics Discovery Index https://www.omicsdi.org Consolidated data sets Genomics, transcriptomics, proteomics,

from 11 repositoriesina  and metabolomics
uniform framework

Subramanian et al. Multi-omics Data Integration, Interpretation, and Its Application



Personalized drug response prediction: multi-label
regression problem

20k genes 400 drugs CCLE data: ~1000 cell lines, 20k genes, 400 drugs
III‘ |

Three settings

® Test patients: no drugs are observed for this patient
® Jest drugs: no patients are observed for this drug

® [est <patient, drug> palirs

1000 cell lines

gl
i

Features




Cell line, xenograft, tumor, patient

Treatment

\

# ‘..*.ﬂ"\
o

i.g‘

Tumor Cell Line Tumor Engraftment

/

Vehicle Control

o Celllineisa“copy’ of a patient. We cannot test one patient with many
drugs. But we can copy a cell line many times.

o Cell line Is cheaper than xenograft. Xenograft is cheaper than patient data

o Xenograft data: Gao et al. High-throughput screening using patient-derived
tumor xenografts to predict clinical trial drug response

e [CGA has some patient data
e ML question: how to integrate cell line data, xenograft data and patient data



Batch effects: inconsistency or consistency?
ANALYSIS

doi:10.1038/nature12831

Inconsistency|in large pharmacogenomic

studies

Benjamin Haibe-Kains"? Nehme El-Hachem®, Nicolai Juul Birkbak®, Andrew C. Jin*, Andrew H. Beck**, Hugo J. W. L. Aerts>®7*
& John Quackenbush®8*

Two large-scale pharmacogenomic studies were published recently in this journal. Genomic data are well correlated
between studies; however, the measured drug response data are highly discordant. Although the source of inconsisten-
cies remains uncertain, it has potential implications for using these outcome measures to assess gene-drug associations
or select potential anticancer drugs on the basis of their reported results.

ANALYSIS

doi:10.1038/naturel5736

Pharmacogenomic agreement between
two cancer cell line data sets

il EH H H H =H =H = H H I =H = H H = = =5 B B =B = = =B =B = = = = N
i he Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer Investigators* 1

Large cancer cell line collections broadly capture the genomic diversity of human cancers and provide valuable insight
into anti-cancer drug response. Here we shovi substantial agreement ahd biological consilience between drug sensitivity
measurements and their associated genomi blicly available large-scale pharmacogenomics
resources: The Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in Cancer databases.




Low correlation between drug response data

b
RN R —
| . |
0.8- I g ' —pa
0.6- &
) =t g
S 0.4- 3
(o)
O
0.2- m
0.0-

'
—_—

| |

Replicates Identical Different

in CGP cell lines cell lines
CGP vs CCLE CGP vs CCLE

Cell lines (CGP)

Integrating two datasets



High correlation between gene expression
(features)
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General framework: jointly decompose
multiple data matrices

Samples Factors
= D B
0 ()
o =
E 5
3 ===
L
—a * Key ideas
=nE= I . . - One matrix capture batch effects
N cluster this matrix .
& 2% z, === = - One matrix capture common patterns
2 g - S=_EE== ' ¥ -
¥ Zcan-ceg E " samples : ® Detail implementations
Assay 2 K 2 Z = ); %l RRE &7 48 . e \What distribution?
S = - N A © 4 . ,
.. > B Z " & ElSmnss El e Mutation (Bernoulli)
EE E o = h m m m = = m = -I . .
%, = % o q! ® Expression count (Poisson)
&% = z |
> s = e How to decompose?
- = e NMF SVD, NN, MF
SSSSS

Argelaguet et al. Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets



Mashup: integrating multiple networks

Network 1 Network 2 Network K
' ‘II\ ' ‘III ' IIIIII‘III
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Global vector 11— Network-specific vector

Cho et al. Compact Integration of Multi-Network Topology for Functional Analysis of Genes



Mashup improves protein function prediction

A
_ ] ] Human, GO BP, 31-100
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Protein function prediction is a good benchmark for machine learning algorithms because of it is high-quality and has
many annotations. It can be used to evaluate:

® Network-based approach
® Seqguence-based approach
® Few-shot/zero-shot learning



Mashup enables genetic interaction prediction

A

EGT™
B Ontotype
B Mashup
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How to leverage SL to develop (personalized) drug
(combination) therapy?

Integrate three sources:

e Mutation data of the patient (mutation A)

* 5L network (Gene B has SL effect with Gene A)
® Drug target information (Drug X inhibits Gene B)

@ Translation & RNA processing

N7 /
r N, o )
. . . / . %
@ Chromatic modification 4 ~ ; T2
] > 0N .
O Cell adhesion ! T N
. . A AR 1 4
@ Angiogenesis ‘ PRI I
’ \ — o b
@ Ubiquitin ! N7 o=
. A R
@ Cell cycle — ;17
7 F e 7 ol
ra — 7
‘ A
"‘\, 1 1 T N ~
\, \_ ~ ==
\‘\ TN SN
. 5 TR g RN
~ AR \ ;) opo~
— _ S 5
it Y I » %
N P
\\ Py A L : ~
N NNE AN ~p N
A - AR
/\\/— e 11 ~ 4 / ‘(
R \\ ‘ ~ 0 » 4
| \ Li Lz
=t SR Y
/N, d e
E - S . )
/RS SEN
RN
oy oo ~ A1

Source: Google image



How to integrate network with a patient matrix

Patient matrix is very sparse
Use network to smooth it
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Hofree et al. Network-based stratification of tumor mutations



How to integrate network with a patient matrix

Project each patient’s vector to the network
Use diffusion model to find overlapping regions

Network smoothing:
O Gene

What diffusion models to use!?

. ()
e Random walk with restart . .‘.‘5"‘:
. O—o Gene-gene({T¥
® Heat diffusion interaction )

® Graph neural network (GCN, GAT)
® Network embedding (no node features)
® Other non-euclidean geometry (hyperbolic embedding)

O Patient
genotype 1 ©

@ Patient
genotype 2

@ Co-occurrence of
genotype 1 and 2

Hofree et al. Network-based stratification of tumor mutations



Results on TCGA: use patient survival data as a benchmark
to evaluate patient clustering model
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How to cluster patients

DATA SOURCES

< o R
:r: 1T 2l e e

Social Genetics and Biochemical L . ) Medical
Interaction  molecular studies research Leigsts MeciGation Eret RO images |

IIl|l| p
Iy

e Patient clustering = data integration

- Find a "signature” vector for each patient

- Signature Is integrated from different data sources
e Heterogeneous data integration

- General challenges: Heterogenous, missing values, noise, privacy
¢ Precision medicine specific data integration challenges:

- Batch effects (different preprocessing pipelines, sequencing
techniques, reference ranges)

- Unpaired data (some patients only have genomics data, some
patients only have EHR data, very few patients have both)

Grapov et al. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine



Genomics

EHR

How to handle unpaired data

Patients with Patients with
only genomics data only EHR data Patients with both

Iul | I fi BT
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&

I 1 JI

i

_______________________

ML question: How to integrate all these patients!?



Translation between features:
generate expression from image

Transcriptomic
representation

Transfer learning

Results improvements
for MSI status

Whole-slide images

i 0 400 | 1200 ... |84700
Transcriptome prediction 6 5 Virtual spatialization
TP53 | HIF1 |CD3D| .. |KRAS
10500 ) 740 |18300| ... | 4000
Transcriptomic data 3 32 34 36 38 4 42 44 46 48 &

Schmauch et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images



Translation between features:
RNA to ATAC translation

A B Tissue Sample RNA expression
Gene Expression OorY e
Chromatin Accessibility O ® .@) @ ® -
Methylation ® @ 40 —
o corsSry @ —> @ ATAC profile
' Proteomics oS @ 1 U l
5 ® Q) . Train model to
Q _1 l L translate single-cell
C Model Architecture D modalities
RNA expression per gene Model Architecture (Fully Unrolled)
RNA Input ATAC Input RNA Input ATAC Input
r a r a
RNA Decoder : RNA Encoder
Latent representation
(16 dimensions) RNA Encoder ATAC Encoder RNA Encoder ATAC Encoder
ATAC Encoder ATAC Decoder RNA Decoder ATAC Decoder ATAC Decoder RNA Decoder

r a a r
ATAC accessibility per peak @ I _NB ANA g RNA ATAC

(r,rrnva) + BCE(a,aarac) + BCE(a,agna) + NB(r,r arac)

Wu et al. BABEL enables cross-modality translation between multiomic profiles at single-cell resolution



